FC100E SERIES MANUAL BOOK

1.Preface

Thank you for choosing FC100E series high-performance, simple frequency converter.

The actual picture in this operation manual is for convenience of explanation, and may be slightly different from the product. Due to product upgrades, it may also be slightly different. Please refer to the actual product.

Please pay attention to hand over this user manual to the end user, and keep it properly for future inspection and maintenance.

If you have any questions, please contact our company or our agent in time, and we will serve you wholeheartedly.
2.Nameplate

3.Model Description

FC100E - 2S - 0.75G

Name	Mark	Description	Detail
AC Drive series	$\boldsymbol{1}$	FC100E	Series Name
Voltage level	$\boldsymbol{2}$	Voltage level	2S:Single-phase 220V Range:-15\% $\sim 20 \%$ 4T:Three-phase 380V Range:-15\% ~20\%
Adaptable power	$\mathbf{3}$	Adaptable motor power(KW)	$0.4 \mathrm{KW} \sim 15 \mathrm{KW}$

4.Model Description

AC Drive Model	Power Capacity (KVA)	Rated Input Current (A)	Rated Output Current (A)	Adaptable motor (KW)

FC100E-2S-0.4G	0.7	6.5	2.1	0.4
FC100E-2S-0.75G	1.5	8.2	4	0.75
FC100E-2S-1.5G	3	14	7	1.5
FC100E-2S-2.2G	4	23	9.6	2.2
FC100E-2S-4.0G	5.9	40	16.5	4.0
FC100E-2S-5.5G	8.9	55	20	5.5
FC100E-2S-7.5G	11	70	30	7.5

380 V Three Phase input and Three phase output $0 \sim 3200 \mathrm{~Hz}$

FC100E-4T-0.75G	1.5	3.4	2.1	0.75
FC100E-4T-1.5G	3	5	3.8	1.5
FC100E-4T-2.2G	4	5.8	5.1	2.2
FC100E-4T-4.0G	5.9	10.	9	4.0
FC100E-4T-5.5G	8.9	14.6	13	5.5
FC100E-4T-7.5G	11	19	17	7.5
FC100E-4T-11G	16	28	25	11
FC100E-4T-15G	21	35	32	15

5.Product outline drawing

W	H	D	W1	H1	ød
FC100E-2S-0.4G~FC100E-2S-2.2G \& FC100E-4T-0.75G~FC100E-4T-2.2G					
85 mm	142 mm	116 mm	73 mm	130 mm	5 mm
FC100E-4T-4G \& FC100E-4T-5.5G					
95.6 mm	180 mm	85 mm	120 mm	168 mm	5 mm
FC100E-4T-7.5G~FC100E-4T-15G \& FC100E-2S-4.0G~FC100E-2S-7.5G					
106.5 mm	240.5 mm	150 mm	96 mm	230 mm	5 mm

6.Keyboard Description

7.External keyboard dimensions

8.Description of the main circuit terminals of the inverter

Mark	Name	Description
R, S, T	Power input terminal	S, T : single-phase 220V AC input power supply R, S, T : three-phase 380V AC input power supply
P+, PB	Brake resistor connection terminal	Connect to the braking resistor
U, V, W	VFD output termina	Connect to a three-phase motor
$\boldsymbol{\theta}$	Ground terminal	Ground terminal

9.Product Specifications

Item	Meaning
Technical Specifications	
Input voltage	Single / three-phase 200-240V, three-phase $380-440 \mathrm{~V}$. The fluctuation does not exceed $\pm 10 \%$, and the unbalance rate is less than 3%
Input frequency	$50 / 60 \mathrm{~Hz} \pm 5 \%$
Output voltage	0 V -input voltage
Output frequency	$0-3200 \mathrm{~Hz}$
Performance	
Overload capacity	150% rated output current for 1 minute, 180% rated output current for 10 seconds
Control mode	Open loop vector control (SVC), V/F control
Run command setting method	Operation panel setting, external terminal setting, communication setting
Speed setting method	Digital setting, analog setting / pulse setting, communication setting
Speed setting resolution	Digital setting: 0.01 Hz , Analog setting: $1 \% \times$ maximum frequency
Speed control accuracy	SVC : $\pm 0.5 \%$
Speed control range	SVC : 1:100
Torque Control Response	SVC : <200ms
Starting torque	SVC : 180% rated torque $/ 0.5 \mathrm{~Hz}$
Torque control accuracy	$\pm 5 \%$

Performance

When high torque is required on site, input parameters such as motor power and current in group P1 first, and set dynamic or static motor parameters in P1-37. After self-learning, the motor output torque and response capability are more powerful.
This machine has the motor speed tracking ability in a simple software detection method. If this function is us-ed, it is recommended to input the motor rated power and rated current parameters first.

Special feature

Programmable input and output terminals Process PID adjustment function

Simple PLC function
Textile swing frequency function
Fixed length control function Protocol

Overvoltage stall

Automatic current
limiting protection
Input and output phase loss protection

Process PID given, feedback loss detection

Output short-circuit protection to ground
Output phase-to-phase short-circuit protection

Module overheating protection

Fan follow-up start with temperature control

Input terminal function can be edited, output terminal function can be edited

Built-in process PID module
Built-in simple PLC module, which can realize timing and multi-segment frequency output

Built-in textile swing frequency function module
Built-in fixed-length control module. Standard MODBUS communication protocol

Protective function

Automatic bus voltage control to prevent overvoltage faults caused by large inertia load deceleration and power generation
The output current is automatically limited to prevent heavy load overcurrent faults, and the heavy load has the overcurrent speed limiting performance of the excavator

Output phase loss automatic detection and alarm function
Process PID automatically recognizes whether the given and feedback are lost, and the loss of alarm function

Effective protection function of output short circuit to ground

Output phase-to-phase short circuit effective protection function
When the load is too heavy, the fan is damaged or the cooling air duct is blocked, real-time monitoring of the module temperature and hot spot protection

The fan only rotates when the inverter is running, and the fan will stop after a delay when the temperature is too high when the inverter is stopped.

Input \& Output

+10 V , load capacity 100 mA , used for external analog power supply,with short circuit protection
+24 V , load capacity 200 mA
AI1 : Voltage $0-10 \mathrm{~V}$ and $0-20 \mathrm{~mA}$ input can be set by software menu to select input mode
AOV: 0-10V, AOI: $0-20 \mathrm{~mA}, 4 \sim 20 \mathrm{~mA}$ output can be realized through parameter setting
DI1-DI5, DI5 can be selected as high-speed pulse signal, 0~50KHz
FM digital output, also high-speed pulse output, $0 \sim 50 \mathrm{KHz}$
TA/TB/TC : Contact capacity 250VAC/3A or 30VDC/1A (with timing relay on-off setting function)
$\mathrm{A}+$ and B - interfaces are suitable for the international standard MODBUS-RTU protocol format
The RJ45 interface can connect an external expansion keyboard, and the external keyboard can adjust the speed to start monitoring or control parameters

Operationc display

5-digit LED digital tubeSetting frequency, output frequency, output voltage, output current, motor speed, output torque, switch terminals,status parameters, programming menu parameters and fault codes, etc. 3 unit lights, 3 status lights

Environmental characteristics

$-10 \sim+40^{\circ} \mathrm{C}$, maximum $50^{\circ} \mathrm{C}$, air temperature change less than $0.5^{\circ} \mathrm{C} / \mathrm{min}$
$40 \sim 50^{\circ} \mathrm{C}$ need to be derated: the output current is derated by 2% every time it exceeds $1^{\circ} \mathrm{C}$

Storage ambient
temperature

Item	Meaning
Environmental characteristics	

10.Wiring of inverter control circuit

Note:

All FC100E series inverters have the same wiring method for the control circuit. The above figure shows the wiring diagram of the three-phase 380 V inverter.

Terminal © represents the main circuit terminal, and \bigcirc represents the control circuit terminal.
11.Function description of control terminal

Category	Terminal symbol	Terminal Name	Function Description
Power supply	$\begin{aligned} & +10 \mathrm{~V}- \\ & \text { GND } \end{aligned}$	External+10V power supply	Provide +10 V power supply to the outside, the maximum output current: 100 mA (with short-circuit protection), generally used as an external potentiometer working power supply, potentiometer resistance range: $1 \mathrm{k} \Omega \sim 5 \mathrm{k} \Omega$
	$\begin{aligned} & +24 \mathrm{~V}- \\ & \text { GND } \end{aligned}$	External+24V power supply	Provide +24 V power supply to the outside, generally used as the working power supply of digital input and output terminals and external sensor power supply Maximumoutputpower:200mA
Analog input	Al1-GND	Analog input terminal 1	1. Input range : $\mathrm{DC} 0 \mathrm{~V} \sim 10 \mathrm{~V} / 0 \mathrm{~mA} \sim 20 \mathrm{~mA}$, determined by P4-39 2. Input impedance: $22 \mathrm{k} \Omega$ for voltage input, 500Ω for current input
Analog output	AOV-GND AOI-GND	Analog output	Input voltage range: $0 \mathrm{~V} \sim 10 \mathrm{~V}$ Output current range: $0 \mathrm{~mA} \sim 20 \mathrm{~mA}, 4 \sim 20 \mathrm{~mA}$ (P5-23 optional)
Digital input	DI1-GND	digital input 1	1. Input impedance: $1 \mathrm{k} \Omega$ 2. Voltage range for level input: $5 \mathrm{~V} \sim 30 \mathrm{~V}$ In addition to the characteristics of DI1 to DI4, DI5 can also be used as a high-speed pulse input channel. Highest frequency:20kHz
	DI2-GND	digital input 2	
	DI3-GND	digital input 3	
	DI4-GND	digital input 4	
	DI5-GND	High-speed pulse input terminal	
Digital output	FM-GND	High-speed pulse output	Constrained by function code P5-00 "FM terminal output mode selection", when used as high-speed pulse output, the maximum frequency is 20 kHz ;when used as opencollector output, it is the same as DO1 specification.

Category	Terminal symbol	Terminal Name	Function Description
Relay output	TA-TB-TC	Relay contact output	Contact drive capability: AC250V,3A DC30V,1A TA, TB: normally closed TA, TC: $n o r m a l l y ~ o p e n ~$
Communication signal	A+ B-	RS-485 communication	A+ is differential positive input, B- is differential negative input

12.Signal input terminal wiring instructions

Because weak analog voltage signals are particularly susceptible to external interference, shielded cables are generally required, and the wiring distance should be as short as possible, not exceeding 20 m . In some occasions where the analog signal is seriously interfered, a filter capacitor or a ferrite magnet should be added on the analog signal source side.

13.Parameter summary table

Code	Name	Setting Range	Factory default	DEC address
Group P0 Basic Parameters				
P0-01	Motor control mode	0 : Speed sensorless vector control 2: V/F control	2	61441
P0-02	Command source selection	0: Panel command channel (LED off) 1: Terminal command channel(LED on) 2: Communication command channe I(LED flashing)	0	61442
P0-03	Main frequency sourceX selection	0 : Digital setting (preset frequency PO08,UP/DO WN can be modified,no memory when power off) 1: Digital setting (preset frequencyP008,UP/DOW N can be modified, no memory when power off) 2: Al1 3: AI2 local potentiometer 4: AI3 external keypad potentiometer 5: HDI pulse setting (DI5) 6: Multi-step instruction 7: Simple PLC 8: PID 9: Communication given	3	61443
P0-04	Auxiliary frequency source Y selection	Same asP0-03 (main frequency sourceX selection)	0	61444
P0-05	Frequency source Y when superimposed range selection	0 : Relative to the maximum frequency 1: Relative to frequency source X	0	61445
P0-06	Frequency source Y range	0\%~150\%	100\%	61446
P0-07	Frequency source superpositio n method selection	Bit: frequency source selection 0 : main frequency source x 1: Primary and secondary operation(the operation mode is determined by ten digits) 2: Switching between primary frequency source X and secondary frequency source y 3: Switching between primary frequency source X and primary and secondary operation results 4: Switching between secondary frequency source y and primary and secondary operation results Ten bits: primary and secondary operation relationship of frequency source 0 : primary + secondary 1: Primary- secondary 2: Maximum value of both 3: Minimum value of both	00	61447
P0-08	Preset frequency	$0.00 \mathrm{~Hz} \sim$ Maximum frequency (P0-10)	50.00 Hz	61448
P0-09	Operation direction	0 : same direction 1: opposite direction	0	61449
P0-10	Maximum frequency	$\begin{aligned} & 50.00 \mathrm{~Hz} \sim 320.00 \mathrm{~Hz} \text { (PO-22=2) } \\ & 50.0 \mathrm{~Hz} \sim 3200.0 \mathrm{~Hz}(\mathrm{PO}-22=1) \end{aligned}$	50.00 Hz	61450
P0-11	Upper limit frequency source	0 : P0-12 setting 1: Al1 2: AI2native potentiometer 3: Al3 external keyboard potentiometer 4: HDI pulse setting 5: Communication given	0.00 Hz	61451
P0-12	Upper limit frequency	Lower limit frequency P0-14~ maximum frequency P0-10	0.00 Hz	61452
P0-13	Upper limit frequency offset	$0.00 \mathrm{~Hz} \sim$ Maximum frequency P0-10	Model is determined	61453
P0-14	Lower frequency	0.00 Hz -upper limit frequency P0-12	1	61454
P0-15	Carrier frequency	$0.5 \mathrm{kHz} \sim 16.0 \mathrm{kHz}$	Model is determined	61455

Code	Name	Setting Range	Factory default	$\begin{gathered} \text { DEC } \\ \text { address } \end{gathered}$
P0-16	The carrier freque-ncy is adjusted with temperature	$\begin{aligned} & \text { 0: No } \\ & \text { 1: Yes } \end{aligned}$	1	61456
P0-17	Acceleration time 1	Os~65000s(P0-19=0)		61457
P0-18	Deceleration time 1	0.00s~650.00s(P0-19=2)	determined	61458
P0-19	Acceleration and deceleration time unit	0 : 1 second 1: 0.1 seconds 2: 0.01 seconds	1	61459
P0-21	Auxiliary frequency source offset frequency when superimposed	$0.00 \mathrm{~Hz} \sim$ Maximum frequency PO10	0.00 Hz	61461
P0-22	Frequency command resolution	$\begin{aligned} & \text { 1: } 0.1 \mathrm{~Hz} \\ & \text { 2: } 0.01 \mathrm{~Hz} \end{aligned}$	2	61462
P0-23	Digital setting frequency stop memory	0: No memory 1: Memory	1	61463
P0-24	Reserve	-	1	61464
P0-25	Acceleration and deceleration time reference frequency	0 : Maximum frequency (P0-10) 1: Setting frequency	0	61465
P0-26	Frequency comma-nd UP/DOWN reference during operation	0 : Running frequency 1: Set frequency	0	61466
P0-27	Command source bundle frequency source	Bit: Operation panel command binding frequency source selection 0 : No binding 1: Digital set frequency 2: Al1 3: AI2 local potentiometer 4: Al3 external keyboard potentiometer Ten bit: Terminal command binding	0000	61467
Group P1 Motor parameters				
P1-00	Motor type selection	0: Ordinary asynchronous motor 1: Variable frequency asynchronous motor	0	61696
P1-01	Motor rated power	0.1~1000KW	Model is determined	61697
P1-02	Motor rated voltage	1~380V	Model is determined	61698
P1-03	Motor rated current	0.01~100A	$\begin{gathered} \text { Model is } \\ \text { determined } \end{gathered}$	61699
P1-04	Motor rated frequency	$0.01 \mathrm{~Hz} \sim$ Maximum frequency	Model is determined	61700
P1-05	Motor rated speed	1~65535rpm	Model is determined	61701
P1-10	Asynchronous motor no-load current	0.01~P1-03	Tuning parameters	61706
P1-37	Tuning selection	0 : No operation 1: Asynchronous motor static tuning 2: Asynchronous motor complete tuning 3: Still Tuning 2	0	61733

Group P2 vector parameters

-00	Speed loop proportional gain 1	1~100	30	61952
01	Speed loop integral time 1	0.01~10.00s	0.50s	61953
-02	Switching frequency 1	0.00~P2-05	5.00 Hz	61954
03	Speed loop proportional gain 2	1~100	20	61955
-04	Speed loop integral time 2	0.01~10.00s	1.00s	61956
-05	Switching frequency 2	P2-02~Maximum frequency	10.00 Hz	61957
-06	Vector control slip gain	50~200\%	150\%	61958
-07	Velocity loop filter time constant	0.000~0.100s	0.000s	61959
-08	Vector control overexcitation gain	0~200	64	61960
-09	Torque upper limit source in speed control mode	0: Function code P2-10 setting 1: Al1 2: AI2 3: Keypad potentiometer 4: PULSE pulse setting 5: Communication given 6: $\mathrm{MIN}(\mathrm{Al} 1, \mathrm{Al} 2)$ 7: MAX (Al1, Al2) The full scale of options 1-7 corresponds to P2-10	0	61961
10	Digital setting of upper limit of torque under speed control mode	0. 0\% 200.0\%	150\%	61962
13	Excitation adjustment proportional gain	0~60000	2000	61965
-14	Excitation adjustment integral gain	0~60000	1300	61966
-15	Torque adjustment proportional gain	0~60000	2000	61967
-16	Torque adjustment integral gain	0~60000	1300	61968

Code	Name	Setting Range	Factory default	DEC ddress
P2-17	Velocity Loop Integral Properties	Bit: integral separation 0 : invalid 1: Valid	0	61969
Group P3 V/F control parameters				
P3-00	V/F curve setting	0: Linear V/F 1: Multi-point V / F 2: Square V/F 3: 1.2 power V/F 4: 1.4 power V/F 6: 1.6 power V/F 8: 1.8 power V/F	0	62208
P3-01	Motor rated power	0.0\%: (Auto torque boost) 0.1~30.0\%	Model is determined	62209
P3-02	Motor rated voltage	$0.00 \mathrm{~Hz} \sim$ Maximum frequency	50.00 Hz	62210
P3-03	Multi-point V/F frequency point 1	0.00Hz~P3-05	0.00 Hz	62211
P3-04	Multipoint V/F Voltage Point 1	0.01 Hz ~Maximum frequency	0.0\%	62212
P3-05	Multi-point V/F frequency point 2	P3-03~P3-07	0.00 Hz	62213
P3-06	Multipoint V/F Voltage Point 2	0.0\%~100. 0\%	0. 0\%	62214
P3-07	Multi-point V/F frequency point 3	P3-05 ~ motor rated frequency (P1- 04)	0.00 Hz	62215
P3-08	Multipoint V/F Voltage Point 3	0.0\% 100.0%	0. 0\%	62216
P3-09	V/F slip compensation gain	0.0\% 200.0\%	0. 0\%	62217
P3-10	V/F over-excitation gain	0~200	64	62218
P3-11	V/F over-excitation gain	0~100	Model is determined	62219
Group P4 input terminals				
P4-00	DI1 terminal function selection	0 : no function 1: Forward rotation (FWD) 2:Reverse operation (REV) 3:Three-wire running control 4: Forward jog (FJOG) 5: Reverse Jog (RJOG) 6: Terminal UP 7: Terminal DOWN 8: Free parking 9: Fault reset (RESET) 10: run pause 11: External fault normally open input 12:Multi-segment command terminal 1 13:Multi-segment command terminal 2 14:Multi-segment command terminal 3 15:Multi-segment command terminal 4 16:Acceleration and deceleration time selection terminal 1 17:Acceleration and deceleration time selection terminal 2 18:Frequency source switching 19:UP/DOWN setting clear(terminal /keypad) 20:Running command switching terminal 1 21:Acceleration and deceleration prohibition 22: PID pause 23: PLC status reset 24: Swing frequency pause 25: Counter input 26: Counter reset 27: Length count input 28: Length reset 29:Torque control prohibited 30: HDI pulse frequency input (Di5) 31: Reserved 32:Immediate DC braking 33: External fault normally closed input 34:Frequency modification enable 35: Inversion of PID action direction 36:External parking terminal 1 37:Running command switching terminal 2 38: PID integral pause 39:Switch between frequency source X and preset frequency 40:Switch between frequency source Y and preset frequency 43:PID parameter switching 44: User-defined fault 1 45: User-defined fault 2 46: Speed control/torque control switching 47: Emergency stop 48: External parking terminal 2 49:Deceleration DC braking 50 :This running time is cleared	1	62464
P4-01	Di2 terminal function selection		2	62465
P4-02	Di3 terminal function selection		4	62466
P4-03	Di4 terminal function selection		9	62467
P4-04	Di5 terminal function selection		1.00s	62468

Code	Name	Setting Range	Factory default	DEC ddress
P4-10	DI filter time	0.000s~1.000s	0.010s	62474
P4-11	Terminal command method	0 : Two-wire type 1 1: Two-wire type 2 2: Three-wire type 1 3: Three-wire type 2	0	62475
P4-12	Terminal UP/DOWN changeconversion rate	$0.001 \mathrm{~Hz} / \mathrm{s} \sim 65.535 \mathrm{~Hz} / \mathrm{s}$	$1.00 \mathrm{~Hz} / \mathrm{s}$	62476
P4-13	Al curve 1 minimum input	0.00V~P4-15	0.00 V	62477
P4-14	Al curve 1 minimum input corresponding setting	$-100.0 \% \sim+100.0 \%$	0. 0\%	62478
P4-15	Al curve 1 maximum input	P4-13~+10.00V	10.00 V	62479
P4-16	Al curve 1 maximum input corresponding setting	$-100.0 \% \sim+100.0 \%$	100.0\%	62480
P4-17	Ai1 filter time	0.00s $\sim 10.00 \mathrm{~s}$	0.10s	62481
P4-18	Al curve 2 minimum input	0.00V ~P4-20	0.00 V	62482
P4-19	Al curve 2 minimum input corresponding setting	$-100.0 \% \sim+100.0 \%$	0.0\%	62483
P4-20	Al curve 2 maximum input	P4-18~+10.00V	10.00 V	62484
P4-21	Al curve 2 maximum input corresponding setting	$-100.0 \% \sim+100.0 \%$	100.0\%	62485
P4-22	Ai2 filter time	0.00s $\sim 10.00 \mathrm{~s}$	0.10s	62486
P4-23	Al curve 3 minimum input	0.00V~P4-25	0.00 V	62487
P4-24	Al curve 3 minimum input corresponding setting	-100. $0 \% \sim+100.0 \%$	0.0\%	62488
P4-25	Al curve 3 maximum input	P4-23~+10.00V	10.00 V	62489
P4-26	Al curve 3 maximum input corresponding setting	-100. $0 \% \sim+100.0 \%$	100.0\%	62490
P4-27	Ai3 filter time	$0.00 \mathrm{~s} \sim 10.00 \mathrm{~s}$	0.10 s	62491
P4-28	HDI pulse minimum input	$0.00 \mathrm{kHz} \sim \mathrm{P} 4-30$	0.00kHz	62492
P4-29	HDI pulse minimum input corresponding setting	$-100.0 \% \sim+100.0 \%$	0. 0\%	62493
P4-30	HDI pulse maximum input	P4-28~50.00kHz	50.00kHz	62494
P4-31	HDI pulse maximum input corresponding setting	$-100.0 \% \sim+100.0 \%$	100.0\%	62495
P4-32	HDI pulse filter time	0.00s~10.00s	0.10s	62496
P4-33	Al curve selection	Bit: Al1 curve selection 1:Curve1 (2points, P4-13 ~ P4-16) 2:Curve2(2points, P4-18 ~ P4-21) 3:Curve3(2points, P4-23 ~ P4-26) Ten digit:Al2curve selection, the same as above Hundredth:Al3curve selection, the same as above	321	62497
P4-34	Al below minimum input setting selection	Bits: Al1 is lower than the minimum input setting selection 0 : corresponding to the minimum input setting 1: 0.0\% Ten digit: AI2 is lower than the minimum input setting selection, as above Hundredth: Al3 is lower than the minimum input setting selection, as above	000	62498
P4-35	Di1 delay time	0.0s~3600.0s	0.0s	62499
P4-36	Di2 delay time	0.0s~3600.0s	0.0s	62500
P4-37	Di3 delay time	0.0s~3600.0s	0.0s	62501
P4-38	DI terminal valid mode selection 1	0 : Active high 1: Active low Ones place: Di1 Tens place: Di2 Hundreds: Di3 Thousands: Di4 Ten thousand: Di5	000	62502
P4-39	$\begin{aligned} & \text { Ai1 input } \\ & \text { voltage/current } \\ & \text { selection } \end{aligned}$	0 : Voltage input 1: Current input	0	62503
Group P5 output terminals				
P5-00	FM terminal output mode selection	0: Pulse output (FMP) 1: Switch output (FMR)	0	62720

Code	Name	Setting Range	Factory default	DEC address
Group P6 start- stop control				
P6-00	Start method	0 : direct start 1: Speed tracking restart 2: Pre-excitation start (AC asynchronous motor)	0	62976
P6-01	Speed tracking mode	0 : start from stop frequency 1: Start from zero speed 2: start from maximum frequency	0	62977
P6-02	Speed tracking speed	1~100	20	62978
P6-03	Start frequency	0~P0-08	0.00 Hz	62979
P6-04	Start frequency hold time	0.0s~100.0s	0. Os	62980
P6-05	Start DC braking current/pre-excitation current	0\%~100\%	0\%	62981
P6-06	Start DC braking time/pre-excitation time	0.0 s $\sim 100.0 \mathrm{~s}$	0. Os	62982
P6-07	Acceleration and deceleration method	$0:$ Linear acceleration and deceleration 1:S-curve acceleration and deceleration A 2:S curve acceleration and deceleration B	0	62983
P6-08	The proportion of time at the beginning of the S-curve	0.0\% (100.0\%-P6-09)	30.0\%	62984
P6-09	The proportion of time at the end of the S-curve	0.0\% (100.0\%-P6-08)	30.0\%	62985
P6-10	Stop mode	0: Decelerate to stop 1: Free stop	0	62986
P6-11	DC braking starting frequency at stop	$0.00 \mathrm{~Hz} \sim$ Maximum frequency	0.00 Hz	62987
P6-12	DC braking waiting time at stop	0.0s~100.0s	0.0s	62988
P6-13	Stop DC braking current	0\% 100%	0\%	62989
P6-14	DC braking time at stop	0.0s~100.0s	0.0s	62990
P6-15	Brake usage	0\% 100\%	100\%	62991
Group P7 keyboard and display				
P7-01	MF.K key function selection	0: MF.K is invalid 1: Switch between the operation panel command channel and the remote command channel (terminal command channel or communication command channel) 2: Forward and reverse switching 3: Forward jog 4: Reverse jog	2	63233
P7-02	STOP/RESET key function	0 : Only in the keyboard operation mode,the STOP /RES key stop function is valid 1: In any operation mode, the STOP/ RES key stop function is valid	1	63234
P7-03	LED running display parameter 1	0000~FFFF Bit00:Running frequency $1(\mathrm{~Hz})$ Bit01:Set frequency (Hz) Bit02: Bus voltage (V) Bit03: Output voltage (V) Bit04: Output current (A) Bit05: Output power (kW) Bit06: Output torque (\%) Bit07: DI input status Bit08: DO output status Bit09: Al1 voltage (V) Bit10: Al2 voltage (V) Bit11: Al3 panel potentiometer voltage (V) Bit12: count value Bit14: Load speed display Bit15: PID setting	001F	63235
P7-04	LED running display parameter 2	0000~FFFF Bit00: PID feedback Bit01: PLC stage Bit02: HDI input pulse frequency (kHz) Bit03: Running frequency $2(\mathrm{~Hz})$ Bit04: Remaining running time Bit05: Al1 voltage before correction (V) Bit06: Al2 voltage before correction (V) Bit07: Voltage before panel potentiometer correction (V) Bit08: Linear speed	0000	63236

Code	Name	Setting Range	Factory default	DEC ddress
P7-04	LED running display parameter 2	Bit09: Current power-on time (Hour) Bit10: Current running time (Min) Bit11: HDI input pulse frequency (Hz) Bit12: Communication setting value Bit13: Encoder feedback speed (Hz) Bit14: Main frequency X display (Hz) Bit15: Auxiliary frequency Y display (Hz)	0000	63236
P7-05	LED stop display parameters	0000 ~ FFFF Bit00: Set frequency(Hz) Bit01: Bus voltage (V) Bit02: DI input status Bit03: DO output status Bit04: Al1 voltage Bit05: AI2 voltage (V) Bit06: Panel potentiometer voltage (V) Bit07: count value Bit08: length value Bit09: PLC stage Bit10: Load speed Bit11: PID setting Bit12: HDI input pulse frequency (kHz) (V)	0033	63237
P7-06	Load speed display factor	0.0001~6.5000	1.0000	63238
P7-07	Inverter module heat sink temperature	$0.0{ }^{\circ} \mathrm{C} \sim 100.0^{\circ} \mathrm{C}$	-	63239
P7-09	Cumulative running time	0h~65535h	-	63241
P7-12	Load speed display decimal places	0:0 decimal point 1:1 decimal point 2:2 decimal places 3:3 decimal places	1	63244
P7-13	Cumulative power-on time	0~65535h	-	63245
P7-14	Cumulative power consumption	0~65535 degrees	-	63246
Group P8 auxiliary function				
P8-00	Jog running frequency	0.00 Hz ~Maximum frequency	6.00 Hz	63488
P8-01	Jog acceleration time	0. 0s~6500.0s	20.0s	63489
P8-02	Jog deceleration time	0. 0s~6500.0s	20.0s	63490
P8-03	Acceleration time	0. $0 \mathrm{~s} \sim 6500.0 \mathrm{~s}$	Model is determined	63491
P8-04	Deceleration time 2	0. 0s 6500.0s	Model is determined	63492
P8-05	Acceleration time 3	0. $0 \mathrm{~s} \sim 6500.0 \mathrm{~s}$	Model is determined	63493
P8-06	Deceleration time 3	0. 0s 6500.0s	Model is determined	63494
P8-07	Acceleration time 4	0. 0s 6500.0s	Model is determined	63495
P8-08	Deceleration time 4	0. 0s 6500.0s	Model is determined	63496
P8-09	Jump Frequency 1	0. 0s 6500.0s	00.00 Hz	63497
P8-10	Jump Frequency 2	0. $0 \mathrm{~s} \sim 6500.0 \mathrm{~s}$	00.00 Hz	63498
P8-14	The set frequency is lower than the lower limit frequency operation mode	0 : run at the lower frequency limit 1: stop 2: Running at zero speed	0	63502
P8-15	Sag control	0. $00 \mathrm{~Hz} \sim 10.00 \mathrm{~Hz}$	00.00 Hz	63503
P8-16	Set the cumulative power-on arrival time	0. 0s~6500.0s	Oh	63504
P8-17	Set the cumulative operation arrival time	0. $0 \mathrm{~s} \sim 6500.0 \mathrm{~s}$	Oh	63505
P8-18	Boot protection selection	0 : not protected 1: protected	0	63506
P8-19	Frequency detection value (FDT1)	0.00 Hz ~Maximum frequency	50.00 Hz	63507
P8-20	Frequency detection hysteresis value	0.0\%~100.0\% (FDT1 level)	5.0\%	63508
P8-21	Frequency reaches pick-out width	0.0\% 100.0% (maximum frequency)	0.0\%	63509
P8-25	Acceleration time 1 and acceleration time 2 switch frequency points	0.00Hz Maximum frequency	0.00 Hz	63513
P8-26	Deceleration time 1 and deceleration time 2 switch frequency points	$0.00 \mathrm{~Hz} \sim$ Maximum frequency	0.00 Hz	63514
P8-27	Terminal jog priority	0: invalid 1: valid	5.0\%	63515
P8-28	Frequency detection value (FDT2)	$0.00 \mathrm{~Hz} \sim$ Maximum frequency	50.00 Hz	63516
P8-29	Frequency detection hysteresis value	0.0\%~100.0\%(FDT2 level)	0.0\%	63517
P8-30	Arbitrary arrival frequency detection value 1	0.00Hz Maximum frequency	50.00 Hz	63518

Code	Name	Setting Range	Factory default	DEC ddress
P8-31	Arbitrary arrival frequency detection width 1	$0.0 \% \sim 100.0 \%$ (maximum frequency)	0.0\%	63519
P8-32	Arbitrary arrival frequency detection value 2	$0.00 \mathrm{~Hz} \sim$ Maximum frequency	5.0\%	63520
P8-33	Arbitrary arrival frequency detection width 1	0.0\%~100.0\% (maximum frequency)	0.0\%	63521
P8-34	Zero current detection level	0.0\% 300.0\%	5.0\%	63522
P8-35	Zero current detection delay time	0.01s~600.00s	0.10s	63523
P8-36	The output current exceeds the limit	0.0\%(not detected)	200.0\%	63524
P8-37	Output current overrun detection delay time	0.00s~600.00s	0.00s	63525
P8-38	Arbitrary arrival current 1	0.0\%~300.0\% (motor rated current)	100.0\%	63526
P8-39	Arbitrary arrival current 1 width	0.0\%~300.0\% (motor rated current)	0.0\%	63527
P8-40	Arbitrary arrival current 2	0.0\%~300.0\% (motor rated current)	100.0\%	63528
P8-41	Arbitrary arrival current 2 width	0.0\%~300.0\% (motor rated current)	0.0\%	63529
P8-42	Timing function selection	0 : invalid 1: valid	0	63530
P8-43	Timing run time selection	0 : P8-44 setting 1: Al1 2: Al2 3: Al3 Note: The analog input range corresponds to P8-44	0	63531
P8-44	Timing run time	$0.0 \mathrm{Min} \sim 6500.0 \mathrm{Min}$	0.0Min	63532
P8-45	Al1 input voltage protection value lower limit	0.00V~P8-46	3.10 V	63533
P8-46	Al1 input voltage protection value upper limit	P8-45~10.00V	6.80 V	63534
P8-47	Module temperature reached	$0^{\circ} \mathrm{C} \sim 100^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	63535
P8-48	Fan control (mainboard FAN socket)	0 : Fan rotates during operation 1: The fan keeps running	0	63536
P8-49	Wake up frequency	Sleep frequency (P8- 51)~maximum frequency (P0- 10)	0.00 Hz	63537
P8-50	Wake up delay time	0.0s~6500.0s	0.0s	63538
P8-51	Sleep frequency	0.00 Hz Wake-up frequency (P8-49)	0.00 Hz	63539
P8-52	Sleep delay time	0.0s~6500.0s	0. Os	63540
P8-53	Arrival time setting for this operation	0.0Min 6500.0Min	0.0 Min	63541
Group P9 Fault and Protection				
P9-00	Motor overload protection selection	0: Disable 1: Enable	1	63744
P9-01	Motor overload protection gain	0.20~10.00	1.00	63745
P9-02	Motor overload warning factor	50\%~100\%	80\%	63746
P9-03	Overvoltage Stall Gain	0~100	0	63747
P9-04	Overvoltage stall action voltage	$\begin{aligned} & 200.0 \sim 2000.0 \mathrm{~V} \\ & 220 \mathrm{~V}: 380 \mathrm{~V} \\ & 380 \mathrm{~V}: 760 \mathrm{~V} \end{aligned}$	Model is determined	63748
P9-05	Overcurrent Stall Gain	0~100	20	63749
P9-06	Overcurrent Stall Protection current	100\% 200%	150\%	63750
P9-07	Power-on to ground shortcircuit protection selection	0: Disable 1: Enable	1	63751
P9-08	Dynamic braking action voltage	200.0~2000.0V	$\begin{gathered} 220 \mathrm{~V}: 380 \\ \mathrm{~V} \end{gathered}$	63752
P9-09	Fault automatic reset times	0~20	0	63753
P9-10	Fault DO action selection during fault automatic reset	0 : no action 1: Action	0	63754
P9-11	Fault automatic reset interval time	0.1s~100.0s	1.0s	63755
P9-12	Input phase loss protection selection	0: Disable 1: Enable	0	63756
P9-13	Output phase loss protection selection	0: Disable 1: Enable	1	63757
P9-14	First failure type	0 : no fault 1: reserved 2: Acceleration overcurrent 3: Deceleration overcurrent 4: Constant speed overcurrent 5: Acceleration overvoltage 6: Deceleration overvoltage 7: Constant speed overvoltage 8: The buffer resistor is overloaded	-	63758

Code	Name	Setting Range	Factory default	DEC ddress
P9-15	Second fault type	9: Undervoltage 10: Inverter overload 11: Motor overload 12: Input phase loss 13: Output phase loss 14: Module overheating 15: External fault 16: Communication abnormality 17: The contactor is abnormal 18: Abnormal current detection 19: Abnormal motor tuning 20: Reserved 21: Parameter read and write exception 22: The inverter hardware is abnormal	-	63759
P9-16	Third (most recent) failure type	25: Reserved 26: Runtime arrives 27: User-defined fault 1 28: User-defined fault 2 29: The power-on time arrives 30: drop load 31: PID feedback lost during runtime 40: Fast current limit timeout 41: Switch the motor while running 42: The speed deviation is too large 43: Motor overspeed 45: Reserved 51: Reserved	-	63760
P9-17	Frequency at the third (most recent) failure	-	-	63761
P9-18	Current at the third (most recent) fault	-	-	63762
P9-19	Bus voltage at the third (most recent) fault	-	-	63763
P9-20	Input terminal status at the third (last) fault	-	-	63764
P9-21	Output terminal status at the third (last) fault	-	-	63765
P9-22	Inverter status at the third (most recent) fault	-	-	63766
P9-23	Power-on time at the third (most recent) fault	-	-	63767
P9-24	Uptime on third (most recent) failure	-	-	63768
P9-27	Frequency at second failure	-	-	63771
P9-28	Current at the second fault	-	-	63772
P9-29	Bus voltage at the second fault	-	-	63773
P9-30	Input terminal status at the second fault	-	-	63774
P9-31	Output terminal status at the second fault	-	-	63775
P9-32	Inverter status at the second fault	-	-	63776
P9-33	Power-on time at the second fault	-	-	63777
P9-34	Operating time at second failure	-	-	63778
P9-37	Frequency at first failure	-	-	63781
P9-38	Current at first fault	-	-	63782
P9-39	Bus voltage at first fault	-	-	63783
P9-40	Input terminal status at the first fault	-	-	63784
P9-41	Output terminal status at the first fault	-	-	63785
P9-42	Inverter status at first fault	-	-	63786
P9-43	Power-on time at first fault	-	-	63787
P9-44	Running time at first failure	-	-	63788
P9-47	Fault protection action selection 1	Bit: motor overload (11) 0 : free stop 1: Stop according to the shutdown mode 2: Continue running Ten digit: input phase loss (12) Hundred bit: output phase loss (13) Thousand bit: output phase loss (15) Ten thousand bits: output phase loss (16)	00000	63791

Code	Name	Setting Range	Factory default	DEC ddress			
P9-54	Continue to run frequency selection in case of failure	0 : Run at the current operating frequency 1: Run at the set frequency 2: Run at the upper limit frequency 3: Run at the lower frequency limit 4: Running at abnormal standby frequency	0	63798			
P9-55	Abnormal backup frequency	60.0\%~100.0\% (100.0\% corresponds to the maximum frequency P0-10)	100.0\%	63799			
P9-59	Instantaneous power failure action selection	0 : invalid 1: slow down 2: Decelerate to stop	0	63803			
P9-60	Instantaneous power interruption action suspension judgment voltage	P9-62~100.0\%	100.0\%	63804			
P9-61	Instantaneous power failure voltage recovery judgment time	0.00s~100.00s	0.50s	63805			
P9-62	Instantaneous power failure action judgment voltage	60.0\%~100.0\%(standard bus voltage)	80.0\%	63806			
P9-63	Drop load protection option	0 : invalid 1: Valid	0	63807			
P9-64	Load drop detection level	0.0~100.0\%	10.0\%	63808			
P9-65	Load drop detection time	0.0~60.0s	1.0s	63809			
Group PA PID function							
PA-00	PID given source	0 : PA-01 setting 1:Al1 2: Al 2 native potentiometer 3: AI3 external keyboard potentiometer 4: HDI input pulse setting (Di5) 5: Communication given 6: Multi-segment instruction given	0	64000			
PA-01	PID value given	0.0~100.0\%	0	64001			
PA-02	PID feedback source	0: Ai1 1: AI2 local potentiometer 2: AI3 external keyboard potentiometer 3: Al1-Al2 4: HDI input pulse setting (Di5) 5: Communication given 6: AI1+AI2 7: MAX (\|AI1	,	AI2) 8: $\operatorname{MIN}(\|\mathrm{Al} 1\|,\|\mathrm{Al} 2\|)$	0	64002
PA-03	PID action direction	0: Positive action 1: Reverse action	0	64003			
PA-04	PID given feedback range	0.0~60.0s	1000	64004			
PA-05	Proportional gain KP1	0.0~100.0	20.0	64005			
PA-06	Integration time T i1	0.01~10.00s	2.00 s	64006			
PA-07	Differential time Td1	0.000~10.000s	0.000s	64007			
PA-08	PID reverse cutoff frequency	0.00~Maximum frequency	2.00 Hz	64008			
PA-09	PID deviation limit	0.0~100.0\%	0.0\%	64009			
PA-10	PID differential limiter	0.00~100.00\%	0.10\%	64010			
PA-11	PID given change time	0.00~650.00s	0.00s	64011			
PA-12	PID feedback filter time	0.00~60.00s	0.00s	64012			
PA-13	PID output filter time	0.00~60.00s	0.00s	64013			
PA-15	Proportional gain KP2	0.0~100.0	20.0	64015			
PA-16	Integration time T i2	0.01~10.00s	2.00 s	64016			
PA-17	Differential time Td2	0.000~10.000s	0.000s	64017			
PA-18	PID parameter switching conditions	0 : do not switch 1: Switch via DI terminal 2: Automatically switch according to the deviation	0	64018			
PA-19	PID parameter switching deviation 1	0.0\% PA-20	20.0\%	64019			
PA-20	PID parameter switching deviation 2	PA-19~100.0\%	80.0\%	64020			
PA-21	PID initial value	0.0~100.0\%	0.0\%	64021			
PA-22	PID initial value hold time	0.00~650.00s	0.00s	64022			
PA-23	Twice output deviation positive maximum value	0.00~100.00\%	1.00\%	64023			
PA-24	Twice output deviation reverse maximum value	0.00~100.00\%	1.00\%	64024			
PA-25	PID integral properties	Bit: integral separation 0 : invalid 1: valid	00	64025			

Code	Name	Setting Range	Factory default	DEC address
PA-25	PID integral properties	Ten digit: whether to stop integration after output to the limit value 0: continue integration 1: Stop integral	00	64025
PA-26	PID feedback loss detection value	0.0\%:Not judged feedback loss 0.1~100.0\%	0.0%	64026
PA-27	PID feedback loss detection time	0. 0s~20. 0s	0.0 s	64027
PA-28	PID shutdown operation	0: stop operation $1:$ stop operation	1	64028

Group PB Wobble, fixed length and count					
PB-00	Wobble frequency setting method	O: Relative to the center frequency $1: R e l a t i v e ~ t o ~ t h e ~ m a x i m u m ~$ frequency	0	64256	
PB-01	Wobble amplitude	$0.0 \sim 100.0 \%$	0.0%	64257	
PB-02	Jump frequency amplitude	$0.0 \sim 50.0 \%$	0.0%	64258	
PB-03	Wobble period	$0.1 \sim 3000.0 \mathrm{~s}$	10.0 s	64259	
PB-04	Triangular wave rise time of wobble frequency	$0.1 \sim 100.0 \%$	50.0%	64260	
PB-05	Set length	$0 \sim 65535 \mathrm{~m}$	1000 m	64261	
PB-06	Actual length	$0 \sim 65535 \mathrm{~m}$	0 m	64262	
PB-07	Pulses per meter	$0.1 \sim 6553.5$	100.0	64263	
PB-08	Set count value	$1 \sim 65535$	1000	64264	
PB-09	Specify count value	$1 \sim 65535$	1000	64265	

Group PC Multi-step instruction and simple PLC				
PC-00	Multi-segment instruction 0	-100.0\%~100.0\%	0.0\%	64512
PC-01	Multi-segment instruction 1	-100.0\%~100.0\%	0.0\%	64513
PC-02	Multi-segment instruction 2	-100.0\%~100.0\%	0.0\%	64514
PC-03	Multi-segment instruction 3	-100.0\%~100.0\%	0.0\%	64515
PC-04	Multi-segment instruction 4	-100.0\%~100.0\%	0.0\%	64516
PC-05	Multi-segment instruction 5	-100.0\%~100.0\%	0.0\%	64517
PC-06	Multi-segment instruction 6	-100.0\%~100.0\%	0.0\%	64518
PC-07	Multi-segment instruction 7	-100.0\%~100.0\%	0.0\%	64519
PC-16	Simple PLC operation mode	0 : shutdown at the end of single operation 1: Maintain the final value at the end of a single operation 2: Keep cycling	0	64528
PC-17	Simple PLC power-down memory selection	Bit:power down memory selection 1:No memory after power failure 2: Power down memory Ten digit: stop memory selection 1:Shutdown without memory 2: Shutdown memory	00	64529
PC-18	Simple PLC 0 segment running time	0.0s(h) 6553.5 s (h)	0.0s(h)	64530
PC-19	Simple PLC 0 segment acceleration and deceleration time selection	0~3	0	64531
PC-20	Simple PLC 1 segment running time	0.0s(h) 6553.5 s (h)	0.0s(h)	64532
PC-21	Simple PLC 1 segment acceleration and deceleration time selection	0~3	0	64533
PC-22	Simple PLC 2 segment running time	0.0s(h) 6553.5 s (h)	0.0s(h)	64534
PC-23	Simple PLC 2 segment acceleration and deceleration time selection	0~3	0	64535
PC-24	Simple PLC 3 segment running time	0.0s(h) 6553.5 s (h)	0.0s(h)	64536
PC-25	Simple PLC 3 segment acceleration and deceleration time selection	0~3	0	64537
PC-26	Simple PLC 4 segment running time	0.0s(h) 6553.5 s (h)	0.0s(h)	64538
PC-27	Simple PLC 4 segment acceleration and deceleration time selection	0~3	0	64539
PC-28	Simple PLC 5 segment running time	0.0s(h) ~6553.5s(h)	0.0s(h)	64540
PC-29	Simple PLC 5 segment acceleration and deceleration time selection	0~3	0	64541
PC-30	Simple PLC 6 segment running time	0.0s(h) 6553.5 s (h)	0.0s(h)	64542
PC-31	Simple PLC 6 segment acceleration and deceleration time selection	0~3	0	64543

Code	Name	Setting Range	Factory default	DEC address
PC-32	Simple PLC 7 segment running time	$0.0 \mathrm{~s}(\mathrm{~h}) \sim 6553.5 \mathrm{~s}(\mathrm{~h})$	$0.0 \mathrm{~s}(\mathrm{~h})$	64544
PC-33	Simple PLC 7 segment acceleration and deceleration time selection	$0 \sim 3$	0	64545
PC-50	Simple PLC running time unit	0: s (seconds) 1: h (hours)	0: Function code PC-00 given 1: Ai1 2: Al2 native potentiometer 3: Al3 external keyboard potentiometer 4: HDI input pulse 5: PID 6: Preset frequency (P0- 08)given,UP/DOWN can be modified	0
	Multi-segment instruction 0 given mode	64562		

Group PD communication parameters
$\left.\begin{array}{l|l|l|c|c}\hline & & \begin{array}{l}\text { 0: 300BPS } \\ \text { 1: 600BPS } \\ \text { 2: 1200BPS } \\ \text { 3: 2400BPS } \\ \text { 4: 4800BPS } \\ \text { 5: 9600BPS } \\ \text { 6: 19200BPS } \\ \text { 7: 38400BPS } \\ \text { 8: } 57600 \mathrm{BPS}\end{array} & & \\ \hline \text { PD-01 } & \text { Baud rate } & \text { Data Format } & \begin{array}{l}\text { 0: No parity (8-N-2) } \\ \text { 1: Even parity (8-E-1) } \\ \text { 2: Odd parity (8- O-1) } \\ \text { 3: No checksum (8-N-1) }\end{array} & 5\end{array}\right\}$

Group A5 Control optimization parameters				
A5-00	DPWN switching upper limit frequency	$0.00 \mathrm{~Hz} \sim 15.00 \mathrm{~Hz}$	12.00 Hz	42240
A5-01	PWN modulation method	0:Asynchronous modulation 1:Synchronous modulation	0	42241
A5-02	Dead time compensation mode selection	0: no compensation 1: Compensation mode 1 2: Compensation mode 2	1	42242
A5-03	Random PWN depth	0: Random PWN is invalid 1~10:PWN carrier frequency random depth	0	42243
A5-04	Fast current limit enable	0: Disable 1: Enable	1	42244
A5-05	Current detection compensation A5-06	Undervoltage point setting	0~100	60.0~140.0\%

| Name | Setting Range | Factory
 default DEC |
| :---: | :---: | :---: | :--- | :--- |

Group UO monitoring parameter table

U0-00	Operating frequency (Hz)	--	0.01 Hz	28672
U0-01	Set frequency (Hz)	-	0.01 Hz	28673
U0-02	Bus voltage (V)	-	0.1 V	28674
U0-03	Output voltage (V)	-	1V	28675
U0-04	Output current (A)	-	0.01A	28676
U0-05	Output power (KW)	-	0.1KW	28677
U0-06	Output torque (\%)	-	0.1\%	28678
U0-07	DI input status	-	1	28679
U0-08	DO output status	-	1	28680
U0-09	Ai1 voltage (V)	-	0.01 V	28681
U0-10	Ai2 voltage (V)	-	0.01 V	28682
U0-11	Ai3 panel potentiometer voltage	-	0.01 V	28683
U0-12	Count value	-	1	28684
U0-13	Length value	-	1	28685
U0-14	Load speed display	-	1	28686
U0-15	PID setting	-	1	28687
U0-16	PID feedback	-	1	28688
U0-17	PLC stage	-	1	28689
U0-18	HDI input pulse frequency (Hz)	-	0.01 kHz	28690
U0-19	Feedback speed (unit: 0.1 Hz)	-	0.1 Hz	28691
U0-20	Remaining running time	-	0.1Min	28692
U0-21	Ai1 voltage before correction	-	0.001 V	28693
U0-22	Voltage before Al2 correction	-	0.001 V	28694
U0-23	Panel potentiometer voltage before correction	-	0.001 V	28695
U0-24	Line speed	-	1m/Min	28696
U0-25	Current power-on time	-	1Min	28697
U0-26	Current running time	-	0.1Min	28698
U0-27	HDI input pulse frequency	-	1 Hz	28699
U0-28	Communication settings	-	0.01\%	28700
U0-30	Main frequency X display	-	0.01 Hz	28702
U0-31	Auxiliary frequency display	-	0.01 Hz	28703
U0-32	View arbitrary memory address value	-	1	28704
U0-35	Target torque (\%)	-	0.1\%	28707
U0-37	Power factor angle	-	0.1°	28709
U0-39	Reserve	-	1 V	28711
U0-40	Reserve	-	1 V	28712
U0-41	Intuitive display of DI function status	-	1	28713
U0-42	Intuitive display of DO input status	-	1	28714
U0-43	DI function status visual display $1 \text { (01-40) }$	-	1	28715
U0-44	DI function status visual display 2 (41-80)	-	1	28716
U0-45	Accident details	-	1	28717
U0-59	Set frequency (\%)	-	0.01\%	28731
U0-60	Running frequency (\%)	-	0.01\%	28732
U0-61	Inverter status	-	1	28733
U0-62	Current fault code	-	1	28734
U0-65	Torque upper limit	-	0.01\%	28737

14.Fault alarm and countermeasures

FC100E inverter has a total of 24 warning messages and protection functions. Once a fault occurs, the protection function will act, the inverter will stop output, the inverter fault relay contact will act, and the fault code will be displayed on the inverter display panel. Before seeking service, users can conduct self-examination according to the prompts in this section, analyze the cause of the fault, and find out the solution. If it belongs to the reasons described in the dotted box, please seek service and contact the agent of the inverter you purchased or directly contact our company.
Among the 21 warning messages, Err22 is a hardware overcurrent or overvoltage signal. In most cases, a hardware overvoltage fault causes Err22 to alarm.

Fault name	Fault code	Troubleshooting	Troubleshooting Countermeasures
Inverter unit protection	Err01	1:The inverter output circuit is shortcircuited 2: Motor and inverter wiring is too long 3: Module overheating 4: The internal wiring of the inverter is loose 5: The main control board is abnormal 6:The driver board is abnormal 7:The inverter module is abnormal	1: Eliminate peripheral faults 2: Install reactor or output filter 3: Check whether the air duct is blocked, whether the fan is working normally and eliminate the problem 4: Plug in all the cables 5: Seek technical support 6: Seek technical support 7: Seek technical support
Acceleration overcurrent	Erro2	1: There is grounding or short circuit in the output circuit of the inverter 2: The control mode is vector and no parameter identification is performed 3: The acceleration time is too short 4: Manual torque boost or V/F curve is not suitable 5: The voltage is low 6: Start the rotating motor 7: Sudden load during acceleration 8: Inverter selection is too small	1: Eliminate peripheral faults 2: Perform motor parameter identification 3: Increase the acceleration time 4: Adjust manual lifting torque or V/F curve 5: Adjust the voltage to the normal range 6: Select speed tracking to start or wait for the motor to stop before starting 7: Cancel sudden load 8: Select the inverter with a larger power leve
Deceleration overcurrentt	Err03	1:There is grounding or short circuit in the output circuit of the inverter 2:The control mode is vector and no parameter identification is performed 3: The deceleration time is too short 4: The voltage is low 5:Sudden load applied during deceleration 6:No braking unit and braking resistor are installed	1: Eliminate peripheral faults 2: Perform motor parameter identification 3: Increase the deceleration time 4: Adjust the voltage to the normal range 5: Cancel sudden load 6: Install braking unit and resistor
Constant speed overcurrent	Err04	1: There is grounding or short circuit in the output circuit of the inverter 2: The control mode is vector and no parameter identification is performed 3: The voltage is low 4: Is there a sudden load during operation? 5: Inverter selection is too small	1: Eliminate peripheral faults 2: Perform motor parameter identification 3: Adjust the voltage to the normal range 4: Cancel sudden load 5: Use a frequency converter with a larger power level
Acceleration overvoltage	Err05	1: Input voltage is too high 2: During the acceleration process,there is an external force that drives the motor to run 3: Short acceleration time 4: No braking unit and braking resistor are installed	1: Adjust the voltage to the normal range 2: Cancel external power or install braking resistor 3: Increase the acceleration time 4: Install braking unit and resistor
Deceleration overvoltage	Err06	1: Input voltage is too high 2: During the acceleration process,there is an external force that drives the motor to run 3: Short acceleration time 4: No braking unit and braking resistor are installed	1: Adjust the voltage to the normal range 2: Cancel external power or install braking resistor 3: Increase the acceleration time 4: Install braking unit and resistor
Constant speed overvoltage	Err07	1: Input voltage is too high 2: During the operation, there is an external force that drives the motor to run	1: Adjust the voltage to the normal range 2: Cancel external power or install braking resistor
$\begin{gathered} \text { Control } \\ \text { power failure } \end{gathered}$	Err08	1: The input voltage is not within the specified range	1: Adjust the voltage to the range required by the specification
Undervoltag e fault	Err09	1: Instantaneous power failure 2: The input voltage of the inverter is not within the range required by the specification 3: The bus voltage is abnormal 4: The rectifier bridge and buffer resistance are abnormal 5: The driver board is abnormal 6: The control board is abnormal	1: Reset fault 2: Adjust the voltage to the normal range 3: Seek technical support 4: Seek technical support 5: Seek technical support 6: Seek technical support
Inverter overload	Err10	1: Whether the load is too large or the motor is blocked 2: Inverter selection is too small	1: Reduce the load and check the motor and mechanical condition 2: Select an inverter with a larger power register
Motor overload	Err11	1: Is the setting of the motor protection parameter P9-01 appropriate? 2: Whether the load is too large or the motor is blocked 3: Inverter selection is too small	1: Set this parameter correctly 2: Reduce the load and check the motor and mechanical condition 3: Use an inverter with a larger power level
Input phase loss	Err12	1: The three-phase input power supply is abnormal 2: The driver board is abnormal 3: The lightning protection board is abnormal 4: The main control board is abnormal	1: Check and eliminate problems in peripheral circuits 2: Seek technical support 3: Seek technical support 4: Seek technical support
Output phase loss	Err13	1: The lead wire from the inverter to the motor is abnormal 2: The three-phase output 3:The driver board is abnormal 4: Module exception	1: Eliminate peripheral faults 2: Check whether the three-phase windings of the motor are normal and troubleshoot 3: Seek technical support 4: Seek technical support
Module overheating	Err14	1: The ambient temperature is too high 2: The air duct is blocked 3: The fan is damaged 4: The module thermistor is damaged 5: The inverter module is damaged	1: Lower the ambient temperature 2: Clean the air duct 3: Replace the fan 4: Replace the thermistor 5: Replace the inverter module

Fault name	Fault code	Troubleshooting	Troubleshooting Countermeasures
External device failure	Err15	1: Multi-function terminal DI input external fault signal 2: Virtual IO function input external fault signal	1: reset operation 2: reset operation
Communication fail	Err16	1: The host computer is not working properly 2: The communication line is abnormal 3: reserved 4: The communication parameter PD group setting is incorrect	1: Check the wiring of the host computer 2: Check the communication cable 3: Correctly set the type of communication expansion card 4: Correctly set the communication parameters
Contactor failure	Err17	1: The driver board and power supply are abnormal 2: The contactor is abnormal	1: Replace the driver board or power board 2: Replace the contactor
Current detection failure	Err18	1: Check Hall device abnormality 2: The driver board is abnormal	1: Replace the Hall device 2: Replace the driver board
Motor tuning failure	Err19	1: The motor parameters are not set according to the nameplate 2: The parameter identification process timed out	1: Set the motor parameters correctly according to the nameplate 2: Check the lead wire from the inverter to the motor
EEPROM Fault	Err21	1:EEPROM chip is damaged	1: Replace the main control board
Inverter hardware failure	Err22	1: Overvoltage exists 2: There is an overcurrent	1: Deal with overvoltage fault 2: Handle according to overcurrent fault
Short to ground fault	Err23	1: The motor is shorted to ground	1: Replace the cable or motor
Cumulative running time reached fault	Err26	1: The accumulated running time reaches the set value	1:Use the parameter initialization function to clear the record information
User-defined fault 1	Err27	1: Input the signal of user 2: Input the signal of userdefined fault1 through the virtual IO function	1: reset operation 2: reset operation
User-defined fault 2	Err28	1: Input the signal of user 2: Input the signal of userdefined fault 2 through the virtual IO function	1: reset operation 2: reset operation
The cumulative power-on time reaches the fault	Err29	1:The cumulative power-on time reaches the set value	1:Use the parameter initialization function to clear the record information
Load drop failure	Err30	1: The ambient temperature is too highermistor is damaged 5: The inverter module is damaged	1: Lower the ambient temperature 2: Cthe inverter module
PID feedback loss fault during runtime	Err31	1: PID feedback is less than the set value of PA-26	1: Check the PID feedback signal or set PA-26 to an appropriate value
Wave-by-wave current limiting fault	Err40	1: Whether the load is too large or the motor is blocked 2: Inverter selection is too small	1: Reduce the load and check the motor and mechanical condition 2: Use an inverter with a larger power level
Switch motor failure while running	Err41	1: Change the current motor selection through the terminal during the operation of the inverter	1: Switch the motor after the inverter stops
Motor Over temperature fault	Err45	1: The temperature sensor wiring is loose 2: Motor temperature is too high	1: Detect temperature sensor wiring and troubleshoot 2:Reduce the carrier frequency or take other cooling measures to heat the motor
Wrong initial position	Err51	1: The deviation between the motor parameters and the actual is too large	1:Re-confirm whether the motor parameters are correct, focusing on whether the rated current is set too small

